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ABSTRACT 
Structural mobility criteria, such as the well-known 

Chebychev-Kutzbach-Grübler (CKG) formula, give the correct 

generic mobility of a linkage (possibly of a certain class, e.g. 

planar, spherical, spatial) provided that it is not topologically 

overconstrained. As a matter of fact all known structural 

mobility criteria are prone to topological redundancies. 

In this paper a combinatorial algorithm is introduced that 

determines the correct generic/topological mobility of any 

planar and spherical mechanism. The algorithm also yields a set 

of independent links that can be used as input, as well as the 

redundantly constrained sub-linkages. A mathematical proof of 

the algorithm and the underlying mathematical concept is 

presented. The proposed method relies on an established 

algorithm developed within combinatorial rigidity theory, 

called pebble game, originally developed for checking the 

rigidity/immobility of constraint graphs. A novel theorem is 

introduced and later proved in the paper which in turn enables 

applying the algorithm to any holonomic planar or spherical 

mechanism with higher and lower kinematic pairs and multiple 

joints. A further important result of applying this algorithm is 

that it gives rise to a decomposition into Assur graphs 

mentioned, which is briefly discussed in this paper. 

1. INTRODUCTION 
The mobility as the essential property of a mechanism has 

been a major matter of interest in mechanism theory. The 

approaches can be broadly classified as those that deal with the 

mobility of a given mechanism, with a particular geometry, and 

those that aim on the generic mobility of a class of mechanisms 

with certain topology [1]. Methods of the first class attempt 

explicit solution of the constraint equations or the 

approximation of the solution variety [13, 14, 15], possibly 

using tools from numerical algebraic geometry [16, 17]. Instead 

of considering a particular geometry, the second class 

approaches the problem from a structural point of view. These 

attempts have a long tradition and only need topological 

information about the existence of links and joints. The CKG 

formula is a well-known topological mobility criterion. It is 

assumed that they generally yield the generic mobility [6], i.e. 

the mobility of almost all realizations of a particular topology. 

Although they are independent of any geometric data 

(geometric overconstraints) all such methods are prone to 

topological redundancy since these criteria only take into 

account the existence of joints and links but not their particular 

arrangement.  

The identification of topological redundancies requires 

graph-theoretic considerations and algorithms. Such an 

algorithm is presented in this paper. The basis for this algorithm 

is a graph representation of the constraints inherited from 

rigidity theory. This differs from the topological graph [3] often 

used in that it does not merely represent the arrangement of 

links and joints, but rather the links and the constraints they are 

subject to. This is presented in section 2, where the two 

established types (body-bar, bar-joint) are recalled, and a novel 

type of constraint graph is introduced. The actual combinatorial 

algorithm is introduced in section 3 together with the 

mathematical foundation. The algorithm is proved to converge 

to the unique generic mobility. In order to motivate the 

application of this algorithm an engineering interpretation of 

the steps and output of the algorithm is given. The application 

of the method is shown in section 4 for a simple example, and 

further interpretations of the output are discussed. The paper 

concludes with a brief outline of future work in section 5. 

The algorithm used in this paper, called pebble game, was 

developed in 1997 [2] for checking whether a set of points 

subject to geometric constraints form a rigid structure. The use 

of this algorithm was also extended to check whether a graph 

consisting of rigid bodies is rigid or mobile as reported in [9]. 

In engineering, pebble game was applied to check the mobility 

of planar mechanisms consisting of only binary links and 

limited to lower kinematic pairs [8]. It was proved that pebble 

game can decompose any mechanism with only binary links to 

Assur graphs in 2d and 3d [7]. It should be noted that the 

algorithm reported in this paper is applicable to any type of 

planar mechanisms with holonomic higher and lower kinematic 

pairs and multiple joints. At first read the reader may skip 

section 3 and go directly to the example in section 4. 

2. CONSTRAINT GRAPHS 
The kinematic functionality of a mechanism is indeed due 

to the geometric and topological constraints imposed on its 

bodies. The topological graph already relates bodies and joints 

but it does not explicitly represent the imposed constraints. To 
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this end a constraint graph   is introduced. In the following   

denotes the generic mobility,        the constraint graph 

(undirected or direct),          the number, and          
the number of vertices of  . 

The idea behind constraint graphs is to represent a 

mechanism as an abstract relation of ‘objects’ representing 

certain degrees of freedom (DOFs). These objects constitute 

vertices of the constraint graph, and are chosen so to uniquely 

represent the mechanism’s configuration. They can stand for 

rigid bodies or points. The constraints between them are 

represented by edges. In this sense the graph represents abstract 

constraint relations that possibly have different physical 

meanings (rotation, translation constraints). 

Presented here next are  the  two established ways of 

describing the constraints in a mechanism. 

2.1 Body-Bar (BB) Constraint Graph 
A vertex of the body-bar graph stands for a rigid body. In 

its generalized form used in this paper the edges represent 

general scalar constraints between bodies. In particular an edge 

can stand for a distance constraint or a rotation constraint. For 

instance, in the BB graph in Figure 1 there are two edges 

between bodies 1 and 2, where both account for translational 

constraints. On the other hand, the bar between vertices 2 and 3 

stands for the gear connection  

A vertex represents a body that can (if considered 

unconstrained) move in the plane. It is therefore assigned the 

mobility 3. 

The term 'body-bar' stems from rigidity theory of structures 

where each edge represents a mass-less bar imposing a scalar 

distance constraint between two bodies 

 
 

2.2 Bar-Joint Constraint Graph 
In this graph representation a vertex represents a point, 

which is permanently coinciding with a point on all the links 

attached to it. A point in space is assigned 3 DOF, and a point in 

the plane 2 DOF.  

A peculiarity of Bar-joint graphs is the existence of so-

called multiple joints. A multiple revolute joint in the plane is 

an aggregate of revolute joints that are geometrically placed at 

the same position. A multiple revolute joint connecting m 

bodies thus stands for     revolute joints with collinear axes. 

For example, in Figure 4, joint B is a multiple revolute joint 

while the other two joints, A and C, are binary joints, i.e., 

connect between two bodies. 

 
 

2.3 Mixed Constraint Graph 
As was explained in section 2.2, there is no unique 

assignment of a body-bar graph to a given mechanism 

containing multiple joints. To overcome this problem, we 

introduce, for the first time in the literature, a new type of 

graph, termed mixed constraint graph            . In this 

graph a vertex   can represent a rigid body,     , as well as 

points,     .  That is, for a planar mechanism, each vertex of 

the mixed constraint graph embodies an object that can move in 

the plane, and its physical meaning follows from that of the 

body-bar and bar joint-graph. If a vertex represents a body (as 

in the body-bar graph), then it possesses three DOFs. If it 

represents a point (i.e. the location of a joint, as in the bar-joint 

graph), then it has two DOFs. 

For example, in Figure 3 vertices A, B and C correspond to 

revolute joints while vertices 4, 8 and 10 correspond to bodies.  
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Figure 1: A gear train (a) and its corresponding body-bar graph (b). 

Figure 2: A bar-joint graph with a multiple joint at B. 

Figure 3: A mechanism (a) and its corresponding mixed 

constraint graph (b). 
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In the following        denotes the number of vertices of a 

mixed graph   representing bodies and       denotes the 

number of vertices representing points/joints. 

3 A COMBINATORIAL ALGORITHM FOR GENERIC 
MOBILITY DETERMINATION  

In this section  the pebble game is introduced as a 

combinatorial algorithm for the determination of the generic 

mobility. Throughout this paper only floating planar linkages 

are considered. Aiming on the generic, i.e. topological, mobility 

the method operates exclusively upon the constraint graph, i.e. 

the topology, and a generic rather than a specific geometry is 

assumed. Redundancies due to the presence of special 

geometries are thus excluded. The basic idea behind the pebble 

game is to assign a set of pebbles to each vertex, where the 

number is equal to the DOF of the physical object represented 

by that vertex when considered unconstraint, and then to 

'activate' the constraints, represented by edges, by coordinately 

relocating the pebbles.  

 

3.1 Combinatorial Background 
One of the main problems in checking the correct generic 

mobility of a mechanical system is to identify whether there is 

no sub-system having over-determinacy, redundant elements. A 

mathematical criterion for checking such non-existence of over-

determinacy was established and proved in 1970 [4], which can 

be stated as follows: 

Laman’s theorem for planar Bar-joint graphs [4]: A floating 

planar bar-joint constraint graph         with       
        determined if and only if                for 

every subgraph    having    vertices and    edges. 

The condition             , together with the 

conditions on the subgraphs   , ensures that the bar-joint graph 

  is rigid. Clearly if         , there are not sufficient 

constraints to make the graph rigid. On the other hand if 

             but the conditions on the subgraphs are 

satisfied, then there are no redundant constraints. Moreover the 

subgraph conditions imply that             , and the 

constraint graph corresponds to a mobile linkage whose 

mobility is given by the following corollary. 

Corollary: Let         be a floating planar bar-joint 

constraint graph with   edges and   vertices. The constraint 

graph is non-redundant if and only if                for 

any subgraph   . If this condition is satisfied, the linkage has 

generic mobility                  . 

For example, the graph in Figure 4.b is not a determined 

floating graph since the number of edges in the sub-graph 

spanned by the vertices              is 6 and is greater than 

       .  The graph in Figure 4.a satisfies Laman’s 

theorem thus it is a floating determined graph. Note, Grübler’s 

equation determines the same DOF for both graphs in Figure 4 

since it cannot distinguish overdetermined from uniquely 

determined graphs.  

 
 

 

 

In 1991 a theorem for determination of floating determined 

body-bar graph was reported [11] to which we refer in the paper 

as Laman’s theorem for BB. In his paper Tay proved the 

theorem for any dimension.  

Planar Body-bar Laman’s theorem [11]: A floating planar 

body-bar constraint graph         with               

is determined if and only if                for every 

subgraph   . 

As for the bar-joint graph this gives rise to the following: 

Corollary: A floating planar body-bar constraint graph   
      is non-redundant if and only if                for 

any subgraph   . If this condition is satisfied, the linkage has 

generic mobility                  . 

For example, the graph in Figure 5.b is not a determined 

BB graph since the number of edges in the sub-graph spanned 

by the vertices            }  is 10 and is greater than 

       .  The graph in Figure 5.a satisfies BB Laman’s 

theorem thus it is a BB determined graph. 

 

      

 

Figure 5. BB graphs that satisfy (a) and do not satisfy (b) the 

BB Laman’s theorem. 
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Figure 4: Floating graph that satisfies (a) and does 

not satisfy (b) Laman theorem. 
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Planar Mixed Laman’s theorem (Shai and Müller, 2013): A 

floating planar mixed constraint graph              with 

                     is determined if and only if 

           
        

     for every subgraph    of  , 

where            is the number of vertices corresponding to 

bodies and points/joints, respectively. 

Corollary: A floating planar mixed constraint graph    
          is non-redundant if and only if            

   

     
     for every subgraph   . If this condition is satisfied, 

the linkage has generic mobility                    

      . 

For example, the floating system in Figure 6.a is not 

determined since the corresponding mixed graph in Figure 10.b 

does not satisfy Mixed Laman’n theorem. To prove that, let us 

choose the sub-graph spanned by the vertices:      
              having 9 edges which is greater than         

  –     , thus mixed Laman’s theorem is not satisfied.    

 

 
 

 

 

 

3.2 A combinatorial Algorithm: The Pebble Game 
Pebble game is a very efficient algorithm to check whether 

a graph satisfies Laman's theorem and thus to check whether 

there exists a sub-graph that is overdetermined. In the 

terminology of graph theory it checks whether there exists an 

over constrained subgraph           , i.e.           
   

     
     for a general mixed graph,                

for a BB graph, and                for a BJ graph. A 

naive algorithm requires checking all the possible subgraphs 

and therefore is bound to consume exponential time. The 

pebble game algorithm succeeds to perform this check in 

polynomial time, and even linear time for some examples [4].  

 The pebble game works as follows: for a planar linkage 

three pebbles are assigned to a vertex of its constraint graph if it 

represents a body and two pebbles if it stands for a point (joint 

location). Such an assignment of pebbles is a concept in graph 

theory referred to as a ‘pebbling’ of a graph. 

The main concept of the algorithm is to assign 'pebbles' to 

any physical object in the kinematic model (bodies, points) that 

represents a certain DOF. These pebbles, i.e. DOFs, are reduced 

in the course of the algorithm, and the number of pebbles 

remaining after invoking the pebble game is equal to the 

generic mobility of the linkage. 

The pebble game starts with an unconstrained system, in the 

sense that the number of pebbles assigned to a vertex is equal to 

the DOF as if its members were not subject to any constraint. 

Denote with      the DOF of the object represented by vertex 

 . For planar constraints graphs        represents a point 

and        if it is a body. The algorithm is initialized by 

assigning          pebbles to each vertex  . That is, initially 

there are no constraints between the elements of a linkage, i.e. 

each element has      DOFs to move in the plane.  

Each edge of    represents one constraint. Initially all 

constraints are inactive, i.e. all objects/vertices are 

unconstrained. An inactive constraint is represented by an 

undirected edge (constraint graph   is initially undirected). 

During the pebble game the constraints are successively 

activated by directing the edges. This indicates that the DOFs 

of one vertex are dependent on the DOFs of other vertices. In 

the algorithm this is achieved by moving a pebble from one of 

its end-vertices. The pebble game is  summarized as follows: 

Input to the Pebble Game algorithm: 

The algorithm starts from the topological graph, i.e. an 

undirected graph as described in section 2. Each vertex 

represents a physical object that has   DOF.  

The Pebble Game algorithm: 

The pebble game converts a given (undirected) constraint 

graph into a directed graph where the direction assignments are 

determined by the directions in which pebbles are moved in 

course of the algorithm. An undirected edge is termed an 

admissible edge if the total of free pebbles next to its end 

vertices is at least four. Only admissible edges can be directed 

and can thus become active constraints. The pebble game can 

be summarized by three main tasks as follows: 

1. INITIALIZATION: Assign      pebbles to each vertex of 

the undirected graph, thus all edges are admissible. This is 

equivalent to regarding all mechanical objects, 

corresponding to the vertices, as unconstrained, i.e. having 

     DOF. 

2. WHILE there exist admissible edges DO the following 

Orientation Move (Vertex - Edge move): 

Let       be an admissible edge, i.e., the total sum of 

pebbles next to the two end vertices is at least four. 

Remove one pebble from one of its end vertices, let it be 

vertex  , and replace the edge by a directed edge      , 
i.e., u becomes the tail and   the head vertex of      . 

END WHILE 

After this loop there are no admissible edges left. This move 

corresponds to activating the constraint corresponding to the 

pebble removed from vertex  . The direction of the edge 

introduces a causality in the sense that one DOF of the tail 

vertex   is assumed to be dependent on one DOF of the 

head vertex  . Note that this is an abstract assignment, i.e. it 

is not said that a certain DOF of   is made dependant on a 

certain DOF of  . 
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Figure 6. A structure (a) whose mixed constraint graph (b) 

does not satisfy the mixed Laman theorem. 
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3. WHILE there are free pebbles left DO the following 

Reorientation move (Vertex - Vertex Move): 

Choose an undirected edge       and make it admissible 

by bringing free pebbles to its end vertices by applying the 

following steps (       denotes the number of pebbles at 

vertex  ):  

Suppose         , if   stands for a point or        
 , if   stands for a body. Then search for a vertex, say ‘ ’, 

with free pebbles, i.e.,         , for which there is a 

directed path from   to   consisting of directed edges. 

Therefore this move consists of redirecting all edges of 

the path from   to    Then, move one pebble from vertex   

to   by reversing/swapping the direction of all the edges 

in the directed path, and assign                 and 

               . 

END WHILE 

This move can be interpreted as redefining the previously 

introduced causality of constraints along the path   to  . 

Output of the Pebble Game algorithm: 

The algorithm ends when all the edges that can be made 

admissible are directed. The edges that are left undirected are 

those for which it is impossible to move 4 pebbles next to their 

end vertices indicating the existence of redundant constraints. 

Example: In Figure 7 a detailed explanation of the iterations 

performed by pebble the game for checking whether the BJ 

graph in Figure 7.a is well-determined. Initially, two pebbles 

are placed next to each vertex as shown in Figure 7.a thus all 

the edges are admissible. Without loss of generality, let us start 

with edge      . Since the sum of the pebbles on its two end 

vertices is equal to four, i.e., it is an admissible edge so that the 

orientation move can be applied. Let us choose to move a 

pebble from  , thus edge       is now directed from   to  , 

i.e.,       as shown in Figure 7.b.  Now we search for another 

admissible edge, found to be      ,  consequently orientation 

move can be applied causing edge       to be directed as 

shown in Figure 7.c.  At this state, there are no admissible 

edges left and there is an undirected edge. Thus the  

reorientation move should be applied. At this stage, the only 

edge that is undirected is edge       and            thus 

we search for a directed path from A to a vertex with free 

pebbles.  In this case vertex   is found, and the path is      , 
as shown in Figure 7.c. Consequently, a pebble is moved from 

vertex   to  , so that              and          
   , and the direction of       is reversed to       and now 

two pebbles are placed next to vertex  , as shown in Figure 7.d. 

Edge       is now admissible thus the  orientation move can 

be applied to edge       causing it to be directed as shown in 

Figure 7.e.  When the algorithm terminates, shown in Figure 

7.e, the following could be concluded: Since all the edges are 

directed it indicates that there is no redundancy. From the fact 

that three free pebbles are left next to vertices it can be 

concluded that the graph is well-determined (it has 3 DOF as a 

floating planar structure). 

 
 

 

3.3 Engineering Interpretation of the Algorithm 

Orientation move: moving a pebble from vertex to edge 

Initially all edges of   are undirected and all vertices have 

an initial number of pebbles corresponding to the DOF the 

associated physical objects (bodies for BB and points for BJ 

graphs) thus all the edges are admissible. Undirected edges 

represent inactive constraints. With the orientation move we 

activate a constraint/edge by defining its direction. By 

assigning this direction we introduce a causality in the sense 

that one DOF (embodied by one pebble) of the tail vertex is 

now considered dependent on one DOF of the head vertex. That 

is, the motion of one DOF of the tail vertex is determined by 

one DOF of the head vertex.  

Once an edge was directed it remains so throughout the 

algorithm, meaning that one DOF of the tail vertex determines 

one DOF of the head vertex. However, the direction of an edge 

can be changed, meaning that the constraint between the two 

elements is imposed by the other element.  

Figure 8 clarifies this idea. Suppose we have two bodies 

connected by a higher kinematic pair as shown in Figure 8.a, 

and denote with (           ) the planar velocity vector of 

body   expressed in the given frame          . The two bodies 

are presented by two vertices each having three pebbles 

standing for the 3 DOF (three independent motion parameters) 

of a body and one edge between them corresponding to the 

higher kinematic pair as shown in Figure 8.b. Initially edge 

      is not directed meaning that the constraint has not been 

activated yet and each of the two bodies has 3 DOF thus it is an 

admissible edge. Moving a pebble from vertex 1 (body 1) to the 

edge makes it directed/activated and oriented from 1 to 2, as 

shown in Figure 8.c. The higher kinematic pair imposes the 

constraint that the normal velocities of both bodies are equal. In 

the reference frame           this means that              .  
The interpretation of the orientation in figure 8.c is that the 
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Figure 7. Example of tracing the operation of pebble game. 
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normal motion of body 1 is prescribed by that of body 2. 

Hence, from an algorithmic point of view, the constraint is 

resolved by the assignment              . This is an 

important aspect to be noticed, and it should be clear that once 

the pebble game is completed it eventually yields a solution 

flow of the kinematics since the remaining DOFs (indicated by 

the free pebbles) determine the motion of the mechanism. 

If for an edge there is a sufficient number of pebbles on 

either vertex, i.e., it is an admissible edge, the definition of 

direction (dependence) is arbitrary. Once the edge is directed, 

its direction can be reversed by changing the vertex from which 

the pebble is consumed. In Figure 8.d the pebble on the edge is 

now consumed from vertex 2 meaning that one of the 

parameters of body 2 is imposed by the parameters of body 1. 

 

 
 

 

Reorientation move - Moving a pebble from vertex to vertex 

to make edges admissible  

The condition to orient an edge is that the edge is 

admissible, i.e., in total at least four pebbles should be next to 

the two end-vertices of the edge. In case that there are less than 

four pebbles, it may still be possible to collect additional 

pebbles. This requires rearranging the pebbles that are already 

assigned to some vertices, achieved by the following move: 

Let         be a constraint edge and   and   its two end 

vertices and suppose that                , i.e. the edge is 

inadmissible. Assume that         , if   stands for a point 

in BJ or mixed graph, or         , if   stands for a body in 

BB or mixed graph. Since the number of free pebbles next to 

vertex ‘ ’ is less than its DOF, we search for a directed path 

from vertex ‘ ’ to the first vertex, let us term it ‘ ’, whose 

        . To move a pebble from   to   the directed path 

from   to   is reversed,                 , and the pebble 

is moved along the path until it reaches  ,where         
        . 

In Figure 9 we give an example of applying this type of 

move on the graph. The sum of the pebbles on   and   is three, 

i.e. less than four, consequently an inadmissible edge, thus one 

pebble should be moved to vertex  . As can be seen in Figure 

9.a a directed path from vertex   to vertex   with one pebble 

was found and is designated by a dashed line. This path is now 

reversed and the pebble is moved from vertex   to   enabling 

now to direct the edge      . 

 

 
 

 

 

 

 

The output of the Pebble Game algorithm:  

1. If all the edges are directed it indicates that the given 

mechanism does not possess redundant constraints. If there 

are undirected edges the mechanisms is generically 

overconstrained. 

2. The total number of free pebbles indicates the DOF of the 

mechanism as a whole. Notice that the vertices where free 

pebbles are left are not unique in general. If a particular set 

of inputs (with number equal to the overall DOF) is 

specified for a given mechanism it should be possible to 

locate the free pebbles at these input links. If this is not 

possible the mechanism can generically not be actuated by 

the selected inputs (drivers). The pebble game thus provides 

a check whether or not a selected set of input links are 

feasible. 

3. The remaining pebbles indicate (generically) independent 

DOFs. The number of free pebbles that can be moved to a 

vertex (physical object) indicates that this object (link, 

point) can be moved independently, with a mobility equal to 

the number of pebbles next to it. The overall motion of the 

mechanism is thus uniquely determined by the motion of 

those vertices that have free pebbles left. How the motion of 

these vertices affects the overal motion of the mechanism is 

indicated by the following result 4. 

4. After locating the left free pebbles next to the input 

links/drivers, the directed cutsets indicate the decomposition 

into Assur Graphs. 

 

3.4 Proof of the Algorithm 
The pebble game is a combinatorial algorithm that 

iteratively produces a solution flow (a directed dependency 

graph) for a system of constraints. In general, there is no unique 

solution, and any solution graph is admissible as long as it is 

causal, i.e. does not comprise over-determined subgraphs. The 

latter is ensured by the algorithm as it will be shown in this 

section.  It will be proved that once an admissible edge is being 

directed it cannot produce an over-determined sub-graph with 

other directed edges. This is expressed by the following 

theorem: 

x y 

z 

x y 

z 
(a) (b) 

1 

2 A 

x’ 
y’ 

1 2 1 2 1 2 

VA1y’=VA2y’ Body 2 imposes one 

constraint on Body1.  

(a) (b) (c) (d) 

Body 1 imposes one 

constraint on Body 2.  

Figure 9. Example of applying the reorientation move to move 

a free pebble from vertex to another vertex. a) The directed path 

from   to  . b) The graph after reversing the directed path from 

  to   and moving the pebble from   to  . 

Figure 8. The meaning of the edge directions in pebble game. 
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Theorem 1:  At any time all the sub-sets of edges that are 

oriented by the algorithm do not possess an over-determined 

sub-graph.  

Proof: The theorem is proved for BJ, BB and mixed graphs by 

showing that all the oriented sub-graphs            satisfy 

Laman’s theorems, i.e. 

                                                                (1) 

where       is the number of edges in    and        and 

        are the number of vertices in    that stand for bodies 

and points, respectively.  

To prove equation 1 let us choose an arbitrary set of vertices, 

  , and examine the distribution of the pebbles that were 

assigned to the vertices in   . It is easy to verify that the 

pebbles can only be in one of the following three classes: 

remain on the vertices, i.e., were not used, yet, to orient edges; 

used to orient edges whose both two end vertices, tails and 

heads, belong to the set   ; used to orient edges whose only tail 

vertices belong to the set   . Note, those edges whose only head 

vertices are in    are not counted since the orientation of edges 

is defined by moving a pebble from the tail vertex to the edge, 

i.e. orientation move. Let us formulate the latter claim in a 

mathematical form:  

                                                      (2) 

where         is the number of free pebbles on the vertices   ; 
e(G’) number of oriented edges whose both end vertices are 

in   ;         number of directed edges going out of   , i.e. 

whose head vertices do not belong to    ;                  is 

the  sum of pebbles that were initially assigned to the graph    
before the pebble game is applied. 

We now prove that for any set of vertices    with more than two 

vertices the sum of the first and third terms in equation 2 is 

greater than 3, i.e.,  

                                                                      (3) 

It will be shown that this inequality remains satisfied from the 

initial state and that applying any move on edges incident with 

   does not violate this inequality.  

At the initial state (by definition of the input to the pebble 

game)                            since for any sub-

graph with at least two vertices there are at list 4 or 6 free 

pebbles in BJ and BB, respectively. For the sake of clarity we 

distinguish in the proof between two types of edges: inner 

edge- whose two end vertices are in    ; outer edge – whose one 

end vertex is in    and the other in the complement     .  
Now we examine all possible cases of applying the two moves 

to the inner and outer edges. As can be seen below there is a 

difference between BJ, BB and mixed, thus we prove the 

correction of pebble game for these three types of graphs.  

Case 1: Orientation move on an inner edge – for orienting an 

edge the edge should be admissible, meaning, there should be 

at least four pebbles on its two end vertices both in BJ, BB and 

mixed. Consequently, after the orientation there are at least 

three pebbles in    in all the three types of graphs, thus the 

inequality 3 is valid, as shown in Figure 10.a. 

Case 2: Orientation move on an outer edge directing it away 

from and towards V’ – in case the outer edge is being oriented 

out of V’ one pebble is consumed, so that         decreases by 

1 but         is increased by 1, as shown in Figure 10.b.  In 

case the edge is orientated towards    then there is no change of 

        since no pebble is consumed or added, and no change 

in the number of outgoing edges, as shown in Figure 10.c. 

Case 3: Reorientation move on an inner edge – the sum of 

the free pebbles and outgoing edges on the two end vertices of 

the inner edge remain the same, as shown in Figure 10.d. 

Case 4: Reorientation move on an outer edge – in case an 

outgoing edge is reoriented toward   , one pebble is brought 

from the outside to the inside of    and the number of outgoing 

edges is decreased by 1, as shown in Figure 10.e. In the case 

that an edge going toward    is reoriented outward 1 free 

pebble is moved from the inside to the outside, so         is 

decreased by 1, while the number of outgoing edges in    is 

increased by 1.  

 

 
Figure 10. Schematic description of all the cases applying the 

two moves on an edge and how it relates to equation 3.  

 

Let us move the summation of the two terms to the RHS, 

resulting in equation 4: 

                            –                            (4) 

Since we proved above that the sum of the last two terms is 

always greater or equal to 3 we proved that equation (3) 

remains fulfilled when the pebble game is applied.  

ENDPROOF 

The above theorem asserts that the pebble game does not 

introduce redundant sub-graphs. It is left to prove that the 

algorithm converges to the correct topological mobility. 

V’ V’ V’ 

x 

y 

peb(x)+peb(y) ≥4 No change 

(a) (c) 

V’ 

x 

y 

No change 
(d) 

peb(V’)         peb(V’)-1 

out(V’)         out(V’)+1        

 

 

(b) 

V’ 

(e) 

V’ 

(f) 

peb(V’)         peb(V’)-1 

out(V’)         out(V’)+1        

 

 

peb(V’)       peb(V’)-1 

out(V’)        out(V’)+1        
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Theorem 2:   Let   be the constraint graph of the mechanism. 

The generic/topological mobility of   is determined as 

           

where    is the directed subgraph, and                 

is the number of pebbles initially assigned to the constraint 

graph  . That is, after the pebble game terminates, the mobility 

is determined by the number of oriented edges in    
(representing non-redundant constraints). 

The idea underlying theorem 2 is that the algorithm starts 

with   DOFs, i.e., the DOF of the unconstrained objects. Each 

edge corresponds to a constraint thus reduces the overall DOF 

by one. In theorem 1 we proved that if an edge is oriented (the 

constraint is activated) it does not introduce redundancy. It is 

thus ensured that orienting an edge reduces the DOF by one. 

We will prove that when pebble game ends it finds the 

maximum set of active constraints independently of which edge 

is oriented first and if there is an unoriented edge it is proved 

that it is a redundant constraint. 

Lemma 3: When the algorithm ends there are at least 3 free 

pebbles that can be moved to any edge. 

Proof: Let         be an arbitrary edge and   and   its end 

vertices. Let us define          as the set of all vertices that 

are reachable from  , i.e.,  there exists a directed path from   

to them. Define the set                     . Since    is 

the set of all reachable vertices, it is          . 

According to equation 3 it follows that:            , 

meaning, there are at least three pebbles in    that, if not 

located next to   and  , can be moved to this edge by applying 

reorientation moves. 

So far it was not mentioned whether edge       is directed or 

not. In case it is undirected and we can’t bring a fourth pebble 

to it, the edge is inadmissible, and it can be concluded that the 

sub-graph induced by the set    is well-determined and the 

edge       is redundant. 

ENDPROOF 

We will extend lemma 3 and show that it is invariant, i.e., it 

is true for any edge throughout applying the algorithm. 

Lemma 4: For any edge and at any step of the algorithm the 

number of free pebbles in the sub-graph induced by the 

reachability of the two end vertices of the edge is at least 3. 

From lemma 4 it follows that every edge can be grounded, 

and if the algorithm does not succeed to direct an edge it is 

proved to be redundant. This proves theorem 2.   

Since each orientation move, i.e. activation of a non-

redundant constraint, reduces the number of free pebbles by 

one, theorem 2 implies that the number of free pebbles 

remaining after the pebble game is equal to the generic DOF of 

the graph. This gives rise to the following statement. 

Corollary 5: The pebble game returns a set of free pebbles 

whose number is equal to the unique generic mobility of the 

linkage. All objects corresponding to the vertices with free 

pebbles can be independently moved with a DOF equal to the 

number of free pebbles assigned to them. The algorithm yields 

a non-redundant directed subgraph G', which represents a 

feasible set of non-redundant constraints, and a non-directed 

subgraph, which represents the corresponding redundant 

constraints. The final result for the generic mobility does not 

depend on the edge where the algorithm starts. 

Remark: It is known [4] that the complexity of the pebble 

game is of polynomial order in the number of vertices,         

and the required memory also grows quadratically, i.e. with  

       . 

4. AN EXAMPLE 
In Figure 11 we apply the mixed pebble game to the mixed 

graph representing the linkage in Figure 6.a. 

Initially, all the bodies and joints have three and two 

pebbles, respectively, as shown in Figure 11.a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Example of applying mixed Pebble game on mixed 

constraint graph. 

The orientation move is first applied and all the admissible 

edges are directed. For example, the two edges         and 

        are admissible, thus can be oriented, since there are 6 

respectively 5 pebbles next to the two end vertices. Figure 11.b 
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shows all edges that could be directed by applying the 

orientation move. Since there are no more admissible edges the 

reorientation move is being applied next. For example, in 

Figure 11.c edge (J2,B1) becomes admissible by moving one 

pebble from vertex B3 and one from B2 thus it  can be oriented 

as shown in Figure 11.d. 

Applying reorientation move on edge         brings a free 

pebble to vertex    thus edge         is now directed as shown 

in Figure 11.e. 

Now we are left with four free pebbles and one 

edge,         unoriented. According to Lemma 3, it is possible 

to move 3 pebbles next to any two end vertices, and we move 

them to the end vertices of edge        . For sake of 

consistency, we move them to vertex B3 as shown in Figure 

11.f. 

In figure 11.f there are no edges that can be made 

admissible by applying the reorientation move and the 

algorithm terminates. The output of the algorithm allows for the 

following interpretations: 

Result 1: The most obvious result is the generic mobility of the 

associated linkage (corollary 5). Since the algorithm terminates 

with 4 free pebbles the linkage generically possesses 4 DOFs. 

Result 2: Beside the generic mobility the particular location of 

the pebbles indicates which links can be moved independently, 

hence can be used as control inputs. As we deal with floating 

planar linkages there are always three DOFs that correspond to 

the relocation of the linkage as a whole. In this example there 

are 4 free pebbles. Each of the pebbles represents one DOF that 

can be independently controlled. The specific allocation of 

pebbles in figure 11.f together with the original mechanism in 

figure 6.a allows for an apparent interpretation: the 3 DOF of 

   describe the location and orientation of the linkage in the 

plane, and the one pebble at     is a translation DOF of the 

location point of     that controls the internal shape. Notice that  

1. The pebble at    is not the joint angle but one component of 

the location vector. 

2. There is no specific assignment of coordinates to the DOFs 

so that ANY generalized coordinate can be used to represent 

the DOF of   . The pebble game algorithm operates on an 

abstract level and does not need specific selection of 

coordinates. 

3. The particular allocation of pebbles is not unique and can be 

controlled in course of the algorithm. Also the algorithm's 

result can be changed by application of the reorientation 

move (which does not change the number of free pebbles). 

For instance, in figure 11.f a free pebble is now assigned to 

vertex   . With a reorientation of        , as shown in figure 

12, this pebble can be moved to   . Now the one 

independent DOF is assigned to   . 

 
Figure 12. The free pebbles indicating that (a) joint    and (b) 

   have independent DOF.  

Result 3: The algorithm further yields information about 

redundant constraints. An edge is redundant if in all vertices 

that belong to the reachability of its two end vertices there is no 

free pebble (lemma 3). For this example it is in particular 

                            , and there are no free 

pebbles on the latter two vertices, as shown in figure 13.a. 

Hence the edge/constraint         is redundant. Moreover the 

result allows for identification of over-determined regions. 

These are defined by the reachable vertices of the redundant 

edge including the end vertices of the redundant edge. In this 

case this is               and the edges between them. These 

edges are colored with red in Figure 13.b. Indeed it is obvious 

already from figure 6 that the red sublinkage is rigid. 

 
Figure 13. Example of over-determined region. a) The 

reachability of the end vertices of the redundant edge        . 
b) The over-determined region, colored with red, defined by the 

redundant edge        .  

Remark: An important result, which cannot be discussed here, 

is that the oriented edges in the over-determined region have a 

unique decomposition into Assur graphs. Details of this 

decomposition will appear in the forthcoming paper of the 

authors. 

5. CONCLUSIONS AND OUTLOOK 
The paper introduces, for the first time in literature, an 

efficient combinatorial algorithm for determining the correct 

generic/topological mobility for any planar or spherical 

mechanism with higher and lower kinematic pairs, including 

multiple joints. As a prerequisite, the paper first introduces two 

types of constraint graphs for modeling the topology of 

linkages: body-bar and bar-joint graphs. It is explained that 

either type fails in modeling certain linkages. To overcome this 
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limitation the concept of a mixed constraint graph is 

introduced. One of the salient conclusions of this paper is that 

by using this graph representation it is possible to represent any 

planar mechanism, and consequently to invoke the 

corresponding mixed pebble game algorithm. The latter is the 

main contribution of the paper: it determines the correct generic 

mobility of the mechanism modeled by a mixed constraint 

graph.  The planar mixed Laman theorem, which is an 

extension of the well-known Laman theorem for bar-joint 

graphs, is given as a mathematical foundation of the algorithm. 

Thereupon it is proved that the novel mixed pebble game 

converges to the correct generic mobility. Moreover it is 

discussed that this combinatorial algorithm allows for 

decomposing any mechanism into its building blocks, namely 

Assur graphs. 

The reported algorithm applies to floating linkages, i.e. 

linkages that are not fixed to a ground. In a forthcoming 

publication, the mixed pebble game will be amended to include, 

so-called grounded mixed constraint graphs, a novel class of 

constraint graphs representing space-fixed mechanisms. To this 

end the algorithm needs to be qualified so to be able to treat 

immobile ground vertices. 
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