
 1 Copyright © 2013 by ASME

Proceedings of the ASME 2013 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2013
August 12-15, 2013, Portland, OR, USA

DETC2013-13364

A NOVEL COMBINATORIAL ALGORITHM FOR DETERMINING THE
GENERIC/TOPOLOGICAL MOBILITY OF PLANAR AND SPHERICAL MECHANISMS

ABSTRACT
Structural mobility criteria, such as the well-known

Chebychev-Kutzbach-Grübler (CKG) formula, give the correct

generic mobility of a linkage (possibly of a certain class, e.g.

planar, spherical, spatial) provided that it is not topologically

overconstrained. As a matter of fact all known structural

mobility criteria are prone to topological redundancies.

In this paper a combinatorial algorithm is introduced that

determines the correct generic/topological mobility of any

planar and spherical mechanism. The algorithm also yields a set

of independent links that can be used as input, as well as the

redundantly constrained sub-linkages. A mathematical proof of

the algorithm and the underlying mathematical concept is

presented. The proposed method relies on an established

algorithm developed within combinatorial rigidity theory,

called pebble game, originally developed for checking the

rigidity/immobility of constraint graphs. A novel theorem is

introduced and later proved in the paper which in turn enables

applying the algorithm to any holonomic planar or spherical

mechanism with higher and lower kinematic pairs and multiple

joints. A further important result of applying this algorithm is

that it gives rise to a decomposition into Assur graphs

mentioned, which is briefly discussed in this paper.

1. INTRODUCTION
The mobility as the essential property of a mechanism has

been a major matter of interest in mechanism theory. The

approaches can be broadly classified as those that deal with the

mobility of a given mechanism, with a particular geometry, and

those that aim on the generic mobility of a class of mechanisms

with certain topology [1]. Methods of the first class attempt

explicit solution of the constraint equations or the

approximation of the solution variety [13, 14, 15], possibly

using tools from numerical algebraic geometry [16, 17]. Instead

of considering a particular geometry, the second class

approaches the problem from a structural point of view. These

attempts have a long tradition and only need topological

information about the existence of links and joints. The CKG

formula is a well-known topological mobility criterion. It is

assumed that they generally yield the generic mobility [6], i.e.

the mobility of almost all realizations of a particular topology.

Although they are independent of any geometric data

(geometric overconstraints) all such methods are prone to

topological redundancy since these criteria only take into

account the existence of joints and links but not their particular

arrangement.

The identification of topological redundancies requires

graph-theoretic considerations and algorithms. Such an

algorithm is presented in this paper. The basis for this algorithm

is a graph representation of the constraints inherited from

rigidity theory. This differs from the topological graph [3] often

used in that it does not merely represent the arrangement of

links and joints, but rather the links and the constraints they are

subject to. This is presented in section 2, where the two

established types (body-bar, bar-joint) are recalled, and a novel

type of constraint graph is introduced. The actual combinatorial

algorithm is introduced in section 3 together with the

mathematical foundation. The algorithm is proved to converge

to the unique generic mobility. In order to motivate the

application of this algorithm an engineering interpretation of

the steps and output of the algorithm is given. The application

of the method is shown in section 4 for a simple example, and

further interpretations of the output are discussed. The paper

concludes with a brief outline of future work in section 5.

The algorithm used in this paper, called pebble game, was

developed in 1997 [2] for checking whether a set of points

subject to geometric constraints form a rigid structure. The use

of this algorithm was also extended to check whether a graph

consisting of rigid bodies is rigid or mobile as reported in [9].

In engineering, pebble game was applied to check the mobility

of planar mechanisms consisting of only binary links and

limited to lower kinematic pairs [8]. It was proved that pebble

game can decompose any mechanism with only binary links to

Assur graphs in 2d and 3d [7]. It should be noted that the

algorithm reported in this paper is applicable to any type of

planar mechanisms with holonomic higher and lower kinematic

pairs and multiple joints. At first read the reader may skip

section 3 and go directly to the example in section 4.

2. CONSTRAINT GRAPHS
The kinematic functionality of a mechanism is indeed due

to the geometric and topological constraints imposed on its

bodies. The topological graph already relates bodies and joints

but it does not explicitly represent the imposed constraints. To

Offer Shai
Mechanical Engineering School,

Tel-Aviv University
Tel-Aviv, Israel

Andreas Müller
Institute of Mechatronics, Chemnitz, Germany,

andreas.mueller@ifm.chemnitz.de

 2 Copyright © 2013 by ASME

this end a constraint graph is introduced. In the following

denotes the generic mobility, the constraint graph

(undirected or direct), the number, and
the number of vertices of .

The idea behind constraint graphs is to represent a

mechanism as an abstract relation of ‘objects’ representing

certain degrees of freedom (DOFs). These objects constitute

vertices of the constraint graph, and are chosen so to uniquely

represent the mechanism’s configuration. They can stand for

rigid bodies or points. The constraints between them are

represented by edges. In this sense the graph represents abstract

constraint relations that possibly have different physical

meanings (rotation, translation constraints).

Presented here next are the two established ways of

describing the constraints in a mechanism.

2.1 Body-Bar (BB) Constraint Graph
A vertex of the body-bar graph stands for a rigid body. In

its generalized form used in this paper the edges represent

general scalar constraints between bodies. In particular an edge

can stand for a distance constraint or a rotation constraint. For

instance, in the BB graph in Figure 1 there are two edges

between bodies 1 and 2, where both account for translational

constraints. On the other hand, the bar between vertices 2 and 3

stands for the gear connection

A vertex represents a body that can (if considered

unconstrained) move in the plane. It is therefore assigned the

mobility 3.

The term 'body-bar' stems from rigidity theory of structures

where each edge represents a mass-less bar imposing a scalar

distance constraint between two bodies

2.2 Bar-Joint Constraint Graph
In this graph representation a vertex represents a point,

which is permanently coinciding with a point on all the links

attached to it. A point in space is assigned 3 DOF, and a point in

the plane 2 DOF.

A peculiarity of Bar-joint graphs is the existence of so-

called multiple joints. A multiple revolute joint in the plane is

an aggregate of revolute joints that are geometrically placed at

the same position. A multiple revolute joint connecting m

bodies thus stands for revolute joints with collinear axes.

For example, in Figure 4, joint B is a multiple revolute joint

while the other two joints, A and C, are binary joints, i.e.,

connect between two bodies.

2.3 Mixed Constraint Graph
As was explained in section 2.2, there is no unique

assignment of a body-bar graph to a given mechanism

containing multiple joints. To overcome this problem, we

introduce, for the first time in the literature, a new type of

graph, termed mixed constraint graph . In this

graph a vertex can represent a rigid body, , as well as

points, . That is, for a planar mechanism, each vertex of

the mixed constraint graph embodies an object that can move in

the plane, and its physical meaning follows from that of the

body-bar and bar joint-graph. If a vertex represents a body (as

in the body-bar graph), then it possesses three DOFs. If it

represents a point (i.e. the location of a joint, as in the bar-joint

graph), then it has two DOFs.

For example, in Figure 3 vertices A, B and C correspond to

revolute joints while vertices 4, 8 and 10 correspond to bodies.

1

2

3

5

4

7

10

8

9

A

B

6

C

4

8

10

6

A

B 1

2

3

7

C

9

D

D

(a)

(b)

A
B

C

0

1

2

3

0

1

2

3

(a) (b)

Figure 1: A gear train (a) and its corresponding body-bar graph (b).

Figure 2: A bar-joint graph with a multiple joint at B.

Figure 3: A mechanism (a) and its corresponding mixed

constraint graph (b).

 3 Copyright © 2013 by ASME

In the following denotes the number of vertices of a

mixed graph representing bodies and denotes the

number of vertices representing points/joints.

3 A COMBINATORIAL ALGORITHM FOR GENERIC
MOBILITY DETERMINATION

In this section the pebble game is introduced as a

combinatorial algorithm for the determination of the generic

mobility. Throughout this paper only floating planar linkages

are considered. Aiming on the generic, i.e. topological, mobility

the method operates exclusively upon the constraint graph, i.e.

the topology, and a generic rather than a specific geometry is

assumed. Redundancies due to the presence of special

geometries are thus excluded. The basic idea behind the pebble

game is to assign a set of pebbles to each vertex, where the

number is equal to the DOF of the physical object represented

by that vertex when considered unconstraint, and then to

'activate' the constraints, represented by edges, by coordinately

relocating the pebbles.

3.1 Combinatorial Background
One of the main problems in checking the correct generic

mobility of a mechanical system is to identify whether there is

no sub-system having over-determinacy, redundant elements. A

mathematical criterion for checking such non-existence of over-

determinacy was established and proved in 1970 [4], which can

be stated as follows:

Laman’s theorem for planar Bar-joint graphs [4]: A floating

planar bar-joint constraint graph with
 determined if and only if for

every subgraph having vertices and edges.

The condition , together with the

conditions on the subgraphs , ensures that the bar-joint graph

 is rigid. Clearly if , there are not sufficient

constraints to make the graph rigid. On the other hand if

 but the conditions on the subgraphs are

satisfied, then there are no redundant constraints. Moreover the

subgraph conditions imply that , and the

constraint graph corresponds to a mobile linkage whose

mobility is given by the following corollary.

Corollary: Let be a floating planar bar-joint

constraint graph with edges and vertices. The constraint

graph is non-redundant if and only if for

any subgraph . If this condition is satisfied, the linkage has

generic mobility .

For example, the graph in Figure 4.b is not a determined

floating graph since the number of edges in the sub-graph

spanned by the vertices is 6 and is greater than

 . The graph in Figure 4.a satisfies Laman’s

theorem thus it is a floating determined graph. Note, Grübler’s

equation determines the same DOF for both graphs in Figure 4

since it cannot distinguish overdetermined from uniquely

determined graphs.

In 1991 a theorem for determination of floating determined

body-bar graph was reported [11] to which we refer in the paper

as Laman’s theorem for BB. In his paper Tay proved the

theorem for any dimension.

Planar Body-bar Laman’s theorem [11]: A floating planar

body-bar constraint graph with

is determined if and only if for every

subgraph .

As for the bar-joint graph this gives rise to the following:

Corollary: A floating planar body-bar constraint graph
 is non-redundant if and only if for

any subgraph . If this condition is satisfied, the linkage has

generic mobility .

For example, the graph in Figure 5.b is not a determined

BB graph since the number of edges in the sub-graph spanned

by the vertices } is 10 and is greater than

 . The graph in Figure 5.a satisfies BB Laman’s

theorem thus it is a BB determined graph.

Figure 5. BB graphs that satisfy (a) and do not satisfy (b) the

BB Laman’s theorem.

1

2

3 4

5

1

2

3 4

5

(a) (b)

A B C

D

E F

A B C

D

E F

(b)

(a)

Figure 4: Floating graph that satisfies (a) and does

not satisfy (b) Laman theorem.

 4 Copyright © 2013 by ASME

Planar Mixed Laman’s theorem (Shai and Müller, 2013): A

floating planar mixed constraint graph with

 is determined if and only if

 for every subgraph of ,

where is the number of vertices corresponding to

bodies and points/joints, respectively.

Corollary: A floating planar mixed constraint graph
 is non-redundant if and only if

 for every subgraph . If this condition is satisfied,

the linkage has generic mobility

 .

For example, the floating system in Figure 6.a is not

determined since the corresponding mixed graph in Figure 10.b

does not satisfy Mixed Laman’n theorem. To prove that, let us

choose the sub-graph spanned by the vertices:
 having 9 edges which is greater than

 – , thus mixed Laman’s theorem is not satisfied.

3.2 A combinatorial Algorithm: The Pebble Game
Pebble game is a very efficient algorithm to check whether

a graph satisfies Laman's theorem and thus to check whether

there exists a sub-graph that is overdetermined. In the

terminology of graph theory it checks whether there exists an

over constrained subgraph , i.e.

 for a general mixed graph,

for a BB graph, and for a BJ graph. A

naive algorithm requires checking all the possible subgraphs

and therefore is bound to consume exponential time. The

pebble game algorithm succeeds to perform this check in

polynomial time, and even linear time for some examples [4].

 The pebble game works as follows: for a planar linkage

three pebbles are assigned to a vertex of its constraint graph if it

represents a body and two pebbles if it stands for a point (joint

location). Such an assignment of pebbles is a concept in graph

theory referred to as a ‘pebbling’ of a graph.

The main concept of the algorithm is to assign 'pebbles' to

any physical object in the kinematic model (bodies, points) that

represents a certain DOF. These pebbles, i.e. DOFs, are reduced

in the course of the algorithm, and the number of pebbles

remaining after invoking the pebble game is equal to the

generic mobility of the linkage.

The pebble game starts with an unconstrained system, in the

sense that the number of pebbles assigned to a vertex is equal to

the DOF as if its members were not subject to any constraint.

Denote with the DOF of the object represented by vertex

 . For planar constraints graphs represents a point

and if it is a body. The algorithm is initialized by

assigning pebbles to each vertex . That is, initially

there are no constraints between the elements of a linkage, i.e.

each element has DOFs to move in the plane.

Each edge of represents one constraint. Initially all

constraints are inactive, i.e. all objects/vertices are

unconstrained. An inactive constraint is represented by an

undirected edge (constraint graph is initially undirected).

During the pebble game the constraints are successively

activated by directing the edges. This indicates that the DOFs

of one vertex are dependent on the DOFs of other vertices. In

the algorithm this is achieved by moving a pebble from one of

its end-vertices. The pebble game is summarized as follows:

Input to the Pebble Game algorithm:

The algorithm starts from the topological graph, i.e. an

undirected graph as described in section 2. Each vertex

represents a physical object that has DOF.

The Pebble Game algorithm:

The pebble game converts a given (undirected) constraint

graph into a directed graph where the direction assignments are

determined by the directions in which pebbles are moved in

course of the algorithm. An undirected edge is termed an

admissible edge if the total of free pebbles next to its end

vertices is at least four. Only admissible edges can be directed

and can thus become active constraints. The pebble game can

be summarized by three main tasks as follows:

1. INITIALIZATION: Assign pebbles to each vertex of

the undirected graph, thus all edges are admissible. This is

equivalent to regarding all mechanical objects,

corresponding to the vertices, as unconstrained, i.e. having

 DOF.

2. WHILE there exist admissible edges DO the following

Orientation Move (Vertex - Edge move):

Let be an admissible edge, i.e., the total sum of

pebbles next to the two end vertices is at least four.

Remove one pebble from one of its end vertices, let it be

vertex , and replace the edge by a directed edge ,
i.e., u becomes the tail and the head vertex of .

END WHILE

After this loop there are no admissible edges left. This move

corresponds to activating the constraint corresponding to the

pebble removed from vertex . The direction of the edge

introduces a causality in the sense that one DOF of the tail

vertex is assumed to be dependent on one DOF of the

head vertex . Note that this is an abstract assignment, i.e. it

is not said that a certain DOF of is made dependant on a

certain DOF of .

B1

B2
J1

B1

B2

B3

J1

J2

J3

(a) (b)

B3

J3

J2

Figure 6. A structure (a) whose mixed constraint graph (b)

does not satisfy the mixed Laman theorem.

 5 Copyright © 2013 by ASME

3. WHILE there are free pebbles left DO the following

Reorientation move (Vertex - Vertex Move):

Choose an undirected edge and make it admissible

by bringing free pebbles to its end vertices by applying the

following steps (denotes the number of pebbles at

vertex):

Suppose , if stands for a point or
 , if stands for a body. Then search for a vertex, say ‘ ’,

with free pebbles, i.e., , for which there is a

directed path from to consisting of directed edges.

Therefore this move consists of redirecting all edges of

the path from to Then, move one pebble from vertex

to by reversing/swapping the direction of all the edges

in the directed path, and assign and

 .

END WHILE

This move can be interpreted as redefining the previously

introduced causality of constraints along the path to .

Output of the Pebble Game algorithm:

The algorithm ends when all the edges that can be made

admissible are directed. The edges that are left undirected are

those for which it is impossible to move 4 pebbles next to their

end vertices indicating the existence of redundant constraints.

Example: In Figure 7 a detailed explanation of the iterations

performed by pebble the game for checking whether the BJ

graph in Figure 7.a is well-determined. Initially, two pebbles

are placed next to each vertex as shown in Figure 7.a thus all

the edges are admissible. Without loss of generality, let us start

with edge . Since the sum of the pebbles on its two end

vertices is equal to four, i.e., it is an admissible edge so that the

orientation move can be applied. Let us choose to move a

pebble from , thus edge is now directed from to ,

i.e., as shown in Figure 7.b. Now we search for another

admissible edge, found to be , consequently orientation

move can be applied causing edge to be directed as

shown in Figure 7.c. At this state, there are no admissible

edges left and there is an undirected edge. Thus the

reorientation move should be applied. At this stage, the only

edge that is undirected is edge and thus

we search for a directed path from A to a vertex with free

pebbles. In this case vertex is found, and the path is ,
as shown in Figure 7.c. Consequently, a pebble is moved from

vertex to , so that and
 , and the direction of is reversed to and now

two pebbles are placed next to vertex , as shown in Figure 7.d.

Edge is now admissible thus the orientation move can

be applied to edge causing it to be directed as shown in

Figure 7.e. When the algorithm terminates, shown in Figure

7.e, the following could be concluded: Since all the edges are

directed it indicates that there is no redundancy. From the fact

that three free pebbles are left next to vertices it can be

concluded that the graph is well-determined (it has 3 DOF as a

floating planar structure).

3.3 Engineering Interpretation of the Algorithm

Orientation move: moving a pebble from vertex to edge

Initially all edges of are undirected and all vertices have

an initial number of pebbles corresponding to the DOF the

associated physical objects (bodies for BB and points for BJ

graphs) thus all the edges are admissible. Undirected edges

represent inactive constraints. With the orientation move we

activate a constraint/edge by defining its direction. By

assigning this direction we introduce a causality in the sense

that one DOF (embodied by one pebble) of the tail vertex is

now considered dependent on one DOF of the head vertex. That

is, the motion of one DOF of the tail vertex is determined by

one DOF of the head vertex.

Once an edge was directed it remains so throughout the

algorithm, meaning that one DOF of the tail vertex determines

one DOF of the head vertex. However, the direction of an edge

can be changed, meaning that the constraint between the two

elements is imposed by the other element.

Figure 8 clarifies this idea. Suppose we have two bodies

connected by a higher kinematic pair as shown in Figure 8.a,

and denote with () the planar velocity vector of

body expressed in the given frame . The two bodies

are presented by two vertices each having three pebbles

standing for the 3 DOF (three independent motion parameters)

of a body and one edge between them corresponding to the

higher kinematic pair as shown in Figure 8.b. Initially edge

 is not directed meaning that the constraint has not been

activated yet and each of the two bodies has 3 DOF thus it is an

admissible edge. Moving a pebble from vertex 1 (body 1) to the

edge makes it directed/activated and oriented from 1 to 2, as

shown in Figure 8.c. The higher kinematic pair imposes the

constraint that the normal velocities of both bodies are equal. In

the reference frame this means that .
The interpretation of the orientation in figure 8.c is that the

A

B C

A

B C

A

B C

A

B C

A

B C

(a) (b) (c)

(d) (e)

Figure 7. Example of tracing the operation of pebble game.

 6 Copyright © 2013 by ASME

normal motion of body 1 is prescribed by that of body 2.

Hence, from an algorithmic point of view, the constraint is

resolved by the assignment . This is an

important aspect to be noticed, and it should be clear that once

the pebble game is completed it eventually yields a solution

flow of the kinematics since the remaining DOFs (indicated by

the free pebbles) determine the motion of the mechanism.

If for an edge there is a sufficient number of pebbles on

either vertex, i.e., it is an admissible edge, the definition of

direction (dependence) is arbitrary. Once the edge is directed,

its direction can be reversed by changing the vertex from which

the pebble is consumed. In Figure 8.d the pebble on the edge is

now consumed from vertex 2 meaning that one of the

parameters of body 2 is imposed by the parameters of body 1.

Reorientation move - Moving a pebble from vertex to vertex

to make edges admissible

The condition to orient an edge is that the edge is

admissible, i.e., in total at least four pebbles should be next to

the two end-vertices of the edge. In case that there are less than

four pebbles, it may still be possible to collect additional

pebbles. This requires rearranging the pebbles that are already

assigned to some vertices, achieved by the following move:

Let be a constraint edge and and its two end

vertices and suppose that , i.e. the edge is

inadmissible. Assume that , if stands for a point

in BJ or mixed graph, or , if stands for a body in

BB or mixed graph. Since the number of free pebbles next to

vertex ‘ ’ is less than its DOF, we search for a directed path

from vertex ‘ ’ to the first vertex, let us term it ‘ ’, whose

 . To move a pebble from to the directed path

from to is reversed, , and the pebble

is moved along the path until it reaches ,where
 .

In Figure 9 we give an example of applying this type of

move on the graph. The sum of the pebbles on and is three,

i.e. less than four, consequently an inadmissible edge, thus one

pebble should be moved to vertex . As can be seen in Figure

9.a a directed path from vertex to vertex with one pebble

was found and is designated by a dashed line. This path is now

reversed and the pebble is moved from vertex to enabling

now to direct the edge .

The output of the Pebble Game algorithm:

1. If all the edges are directed it indicates that the given

mechanism does not possess redundant constraints. If there

are undirected edges the mechanisms is generically

overconstrained.

2. The total number of free pebbles indicates the DOF of the

mechanism as a whole. Notice that the vertices where free

pebbles are left are not unique in general. If a particular set

of inputs (with number equal to the overall DOF) is

specified for a given mechanism it should be possible to

locate the free pebbles at these input links. If this is not

possible the mechanism can generically not be actuated by

the selected inputs (drivers). The pebble game thus provides

a check whether or not a selected set of input links are

feasible.

3. The remaining pebbles indicate (generically) independent

DOFs. The number of free pebbles that can be moved to a

vertex (physical object) indicates that this object (link,

point) can be moved independently, with a mobility equal to

the number of pebbles next to it. The overall motion of the

mechanism is thus uniquely determined by the motion of

those vertices that have free pebbles left. How the motion of

these vertices affects the overal motion of the mechanism is

indicated by the following result 4.

4. After locating the left free pebbles next to the input

links/drivers, the directed cutsets indicate the decomposition

into Assur Graphs.

3.4 Proof of the Algorithm
The pebble game is a combinatorial algorithm that

iteratively produces a solution flow (a directed dependency

graph) for a system of constraints. In general, there is no unique

solution, and any solution graph is admissible as long as it is

causal, i.e. does not comprise over-determined subgraphs. The

latter is ensured by the algorithm as it will be shown in this

section. It will be proved that once an admissible edge is being

directed it cannot produce an over-determined sub-graph with

other directed edges. This is expressed by the following

theorem:

x y

z

x y

z
(a) (b)

1

2 A

x’
y’

1 2 1 2 1 2

VA1y’=VA2y’ Body 2 imposes one

constraint on Body1.

(a) (b) (c) (d)

Body 1 imposes one

constraint on Body 2.

Figure 9. Example of applying the reorientation move to move

a free pebble from vertex to another vertex. a) The directed path

from to . b) The graph after reversing the directed path from

 to and moving the pebble from to .

Figure 8. The meaning of the edge directions in pebble game.

 7 Copyright © 2013 by ASME

Theorem 1: At any time all the sub-sets of edges that are

oriented by the algorithm do not possess an over-determined

sub-graph.

Proof: The theorem is proved for BJ, BB and mixed graphs by

showing that all the oriented sub-graphs satisfy

Laman’s theorems, i.e.

 (1)

where is the number of edges in and and

 are the number of vertices in that stand for bodies

and points, respectively.

To prove equation 1 let us choose an arbitrary set of vertices,

 , and examine the distribution of the pebbles that were

assigned to the vertices in . It is easy to verify that the

pebbles can only be in one of the following three classes:

remain on the vertices, i.e., were not used, yet, to orient edges;

used to orient edges whose both two end vertices, tails and

heads, belong to the set ; used to orient edges whose only tail

vertices belong to the set . Note, those edges whose only head

vertices are in are not counted since the orientation of edges

is defined by moving a pebble from the tail vertex to the edge,

i.e. orientation move. Let us formulate the latter claim in a

mathematical form:

 (2)

where is the number of free pebbles on the vertices ;
e(G’) number of oriented edges whose both end vertices are

in ; number of directed edges going out of , i.e.

whose head vertices do not belong to ; is

the sum of pebbles that were initially assigned to the graph
before the pebble game is applied.

We now prove that for any set of vertices with more than two

vertices the sum of the first and third terms in equation 2 is

greater than 3, i.e.,

 (3)

It will be shown that this inequality remains satisfied from the

initial state and that applying any move on edges incident with

 does not violate this inequality.

At the initial state (by definition of the input to the pebble

game) since for any sub-

graph with at least two vertices there are at list 4 or 6 free

pebbles in BJ and BB, respectively. For the sake of clarity we

distinguish in the proof between two types of edges: inner

edge- whose two end vertices are in ; outer edge – whose one

end vertex is in and the other in the complement .
Now we examine all possible cases of applying the two moves

to the inner and outer edges. As can be seen below there is a

difference between BJ, BB and mixed, thus we prove the

correction of pebble game for these three types of graphs.

Case 1: Orientation move on an inner edge – for orienting an

edge the edge should be admissible, meaning, there should be

at least four pebbles on its two end vertices both in BJ, BB and

mixed. Consequently, after the orientation there are at least

three pebbles in in all the three types of graphs, thus the

inequality 3 is valid, as shown in Figure 10.a.

Case 2: Orientation move on an outer edge directing it away

from and towards V’ – in case the outer edge is being oriented

out of V’ one pebble is consumed, so that decreases by

1 but is increased by 1, as shown in Figure 10.b. In

case the edge is orientated towards then there is no change of

 since no pebble is consumed or added, and no change

in the number of outgoing edges, as shown in Figure 10.c.

Case 3: Reorientation move on an inner edge – the sum of

the free pebbles and outgoing edges on the two end vertices of

the inner edge remain the same, as shown in Figure 10.d.

Case 4: Reorientation move on an outer edge – in case an

outgoing edge is reoriented toward , one pebble is brought

from the outside to the inside of and the number of outgoing

edges is decreased by 1, as shown in Figure 10.e. In the case

that an edge going toward is reoriented outward 1 free

pebble is moved from the inside to the outside, so is

decreased by 1, while the number of outgoing edges in is

increased by 1.

Figure 10. Schematic description of all the cases applying the

two moves on an edge and how it relates to equation 3.

Let us move the summation of the two terms to the RHS,

resulting in equation 4:

 – (4)

Since we proved above that the sum of the last two terms is

always greater or equal to 3 we proved that equation (3)

remains fulfilled when the pebble game is applied.

ENDPROOF

The above theorem asserts that the pebble game does not

introduce redundant sub-graphs. It is left to prove that the

algorithm converges to the correct topological mobility.

V’ V’ V’

x

y

peb(x)+peb(y) ≥4 No change

(a) (c)

V’

x

y

No change
(d)

peb(V’) peb(V’)-1

out(V’) out(V’)+1

(b)

V’

(e)

V’

(f)

peb(V’) peb(V’)-1

out(V’) out(V’)+1

peb(V’) peb(V’)-1

out(V’) out(V’)+1

 8 Copyright © 2013 by ASME

Theorem 2: Let be the constraint graph of the mechanism.

The generic/topological mobility of is determined as

where is the directed subgraph, and

is the number of pebbles initially assigned to the constraint

graph . That is, after the pebble game terminates, the mobility

is determined by the number of oriented edges in
(representing non-redundant constraints).

The idea underlying theorem 2 is that the algorithm starts

with DOFs, i.e., the DOF of the unconstrained objects. Each

edge corresponds to a constraint thus reduces the overall DOF

by one. In theorem 1 we proved that if an edge is oriented (the

constraint is activated) it does not introduce redundancy. It is

thus ensured that orienting an edge reduces the DOF by one.

We will prove that when pebble game ends it finds the

maximum set of active constraints independently of which edge

is oriented first and if there is an unoriented edge it is proved

that it is a redundant constraint.

Lemma 3: When the algorithm ends there are at least 3 free

pebbles that can be moved to any edge.

Proof: Let be an arbitrary edge and and its end

vertices. Let us define as the set of all vertices that

are reachable from , i.e., there exists a directed path from

to them. Define the set . Since is

the set of all reachable vertices, it is .

According to equation 3 it follows that: ,

meaning, there are at least three pebbles in that, if not

located next to and , can be moved to this edge by applying

reorientation moves.

So far it was not mentioned whether edge is directed or

not. In case it is undirected and we can’t bring a fourth pebble

to it, the edge is inadmissible, and it can be concluded that the

sub-graph induced by the set is well-determined and the

edge is redundant.

ENDPROOF

We will extend lemma 3 and show that it is invariant, i.e., it

is true for any edge throughout applying the algorithm.

Lemma 4: For any edge and at any step of the algorithm the

number of free pebbles in the sub-graph induced by the

reachability of the two end vertices of the edge is at least 3.

From lemma 4 it follows that every edge can be grounded,

and if the algorithm does not succeed to direct an edge it is

proved to be redundant. This proves theorem 2.

Since each orientation move, i.e. activation of a non-

redundant constraint, reduces the number of free pebbles by

one, theorem 2 implies that the number of free pebbles

remaining after the pebble game is equal to the generic DOF of

the graph. This gives rise to the following statement.

Corollary 5: The pebble game returns a set of free pebbles

whose number is equal to the unique generic mobility of the

linkage. All objects corresponding to the vertices with free

pebbles can be independently moved with a DOF equal to the

number of free pebbles assigned to them. The algorithm yields

a non-redundant directed subgraph G', which represents a

feasible set of non-redundant constraints, and a non-directed

subgraph, which represents the corresponding redundant

constraints. The final result for the generic mobility does not

depend on the edge where the algorithm starts.

Remark: It is known [4] that the complexity of the pebble

game is of polynomial order in the number of vertices,

and the required memory also grows quadratically, i.e. with

 .

4. AN EXAMPLE
In Figure 11 we apply the mixed pebble game to the mixed

graph representing the linkage in Figure 6.a.

Initially, all the bodies and joints have three and two

pebbles, respectively, as shown in Figure 11.a.

Figure 11. Example of applying mixed Pebble game on mixed

constraint graph.

The orientation move is first applied and all the admissible

edges are directed. For example, the two edges and

 are admissible, thus can be oriented, since there are 6

respectively 5 pebbles next to the two end vertices. Figure 11.b

B1

B2

B3

J1

J2

J3

B1

B2

B3

J1

J2

J3

B1

B2

B3

J1

J2

J3

B1

B2

B3

J1

J2

J3

B1

B2

B3

J1

J2

J3

B1

B2

B3

J1

J2

J3

(a) (b)

(c) (d)

(e)
(f)

 9 Copyright © 2013 by ASME

shows all edges that could be directed by applying the

orientation move. Since there are no more admissible edges the

reorientation move is being applied next. For example, in

Figure 11.c edge (J2,B1) becomes admissible by moving one

pebble from vertex B3 and one from B2 thus it can be oriented

as shown in Figure 11.d.

Applying reorientation move on edge brings a free

pebble to vertex thus edge is now directed as shown

in Figure 11.e.

Now we are left with four free pebbles and one

edge, unoriented. According to Lemma 3, it is possible

to move 3 pebbles next to any two end vertices, and we move

them to the end vertices of edge . For sake of

consistency, we move them to vertex B3 as shown in Figure

11.f.

In figure 11.f there are no edges that can be made

admissible by applying the reorientation move and the

algorithm terminates. The output of the algorithm allows for the

following interpretations:

Result 1: The most obvious result is the generic mobility of the

associated linkage (corollary 5). Since the algorithm terminates

with 4 free pebbles the linkage generically possesses 4 DOFs.

Result 2: Beside the generic mobility the particular location of

the pebbles indicates which links can be moved independently,

hence can be used as control inputs. As we deal with floating

planar linkages there are always three DOFs that correspond to

the relocation of the linkage as a whole. In this example there

are 4 free pebbles. Each of the pebbles represents one DOF that

can be independently controlled. The specific allocation of

pebbles in figure 11.f together with the original mechanism in

figure 6.a allows for an apparent interpretation: the 3 DOF of

 describe the location and orientation of the linkage in the

plane, and the one pebble at is a translation DOF of the

location point of that controls the internal shape. Notice that

1. The pebble at is not the joint angle but one component of

the location vector.

2. There is no specific assignment of coordinates to the DOFs

so that ANY generalized coordinate can be used to represent

the DOF of . The pebble game algorithm operates on an

abstract level and does not need specific selection of

coordinates.

3. The particular allocation of pebbles is not unique and can be

controlled in course of the algorithm. Also the algorithm's

result can be changed by application of the reorientation

move (which does not change the number of free pebbles).

For instance, in figure 11.f a free pebble is now assigned to

vertex . With a reorientation of , as shown in figure

12, this pebble can be moved to . Now the one

independent DOF is assigned to .

Figure 12. The free pebbles indicating that (a) joint and (b)

 have independent DOF.

Result 3: The algorithm further yields information about

redundant constraints. An edge is redundant if in all vertices

that belong to the reachability of its two end vertices there is no

free pebble (lemma 3). For this example it is in particular

 , and there are no free

pebbles on the latter two vertices, as shown in figure 13.a.

Hence the edge/constraint is redundant. Moreover the

result allows for identification of over-determined regions.

These are defined by the reachable vertices of the redundant

edge including the end vertices of the redundant edge. In this

case this is and the edges between them. These

edges are colored with red in Figure 13.b. Indeed it is obvious

already from figure 6 that the red sublinkage is rigid.

Figure 13. Example of over-determined region. a) The

reachability of the end vertices of the redundant edge .
b) The over-determined region, colored with red, defined by the

redundant edge .

Remark: An important result, which cannot be discussed here,

is that the oriented edges in the over-determined region have a

unique decomposition into Assur graphs. Details of this

decomposition will appear in the forthcoming paper of the

authors.

5. CONCLUSIONS AND OUTLOOK
The paper introduces, for the first time in literature, an

efficient combinatorial algorithm for determining the correct

generic/topological mobility for any planar or spherical

mechanism with higher and lower kinematic pairs, including

multiple joints. As a prerequisite, the paper first introduces two

types of constraint graphs for modeling the topology of

linkages: body-bar and bar-joint graphs. It is explained that

either type fails in modeling certain linkages. To overcome this

B1

B2

B3

J1

J2

J3

B1

B2

B3

J1

J2

J3

(a)
(b)

B1

B2

B3

J1

J2

J3

(a)

B1

B2

B3

J1

J2

J3

(b)

 10 Copyright © 2013 by ASME

limitation the concept of a mixed constraint graph is

introduced. One of the salient conclusions of this paper is that

by using this graph representation it is possible to represent any

planar mechanism, and consequently to invoke the

corresponding mixed pebble game algorithm. The latter is the

main contribution of the paper: it determines the correct generic

mobility of the mechanism modeled by a mixed constraint

graph. The planar mixed Laman theorem, which is an

extension of the well-known Laman theorem for bar-joint

graphs, is given as a mathematical foundation of the algorithm.

Thereupon it is proved that the novel mixed pebble game

converges to the correct generic mobility. Moreover it is

discussed that this combinatorial algorithm allows for

decomposing any mechanism into its building blocks, namely

Assur graphs.

The reported algorithm applies to floating linkages, i.e.

linkages that are not fixed to a ground. In a forthcoming

publication, the mixed pebble game will be amended to include,

so-called grounded mixed constraint graphs, a novel class of

constraint graphs representing space-fixed mechanisms. To this

end the algorithm needs to be qualified so to be able to treat

immobile ground vertices.

REFERENCES

[1] G. Gogu, Mobility of mechanism: a critical review, Mech.

Mach. Theory 40 (2005) 1068–1097.

[2] D. J. Jacobs and B. Hendrickson. An algorithm for two-

dimensional rigidity percolation: the pebble game. Journal of

Computational Physics, 137 (1997) 346 – 365

[3] A. Jain, Graph theoretic foundations of multibody

dynamics, Part I: structural properties, Multibody. Syst. Dyn.

26 (2011) 307–333.

[4] G. Laman. On graphs and rigidity of plane skeletal

structures. J. Engineering Mathematics, 4 (1970) 331–340.

[5] A. Lee and I. Streinu, Pebble game algorithms and sparse

graphs, Discrete Mathematics, 308: 8 (2008) 1425-1437.

[6] A. Müller: Generic Mobility of Rigid Body Mechanisms,

Mech. Machine Theory, Vol. 44, no. 6, June 2009 1240-1255.

[7] O. Shai, "Rigidity of 2d and 3d Pinned Frameworks and the

Pebble Game", London. Mathematical Society Workshop:

Rigidity of Frameworks and Applications, July 12-15,

Lancaster University , England, 2010.

[8] O. Shai, A. Sljoka and W. Whiteley, "Directed Graphs,

Decompositions, and Spatial Rigidity" submitted to Discrete

Applied Mathematics, 2010.

[9] A.Sljoka , 2006, Counting for Rigidity, Flexibility and

extensions via the Pebble Game Algorithm, Master’s Thesis,

York University.

[10] A. Sljoka, O Shai and W. Whiteley, "Checking mobility

and decomposition of linkages via Pebble Game Algorithm"

ASME Design Engineering Technical Conferences, August 28-

31, 2011, Washington, USA.

[11] T.S. Tay, Henneberg's method for bar and body

frameworks, Structural Topology, vol. 17, pp. 53-58, 1991.

[12] T. Tiong-Seng, Henneberg’s method for bar and body

frameworks, Structural Topology 17 (1991), 53–58.

[13] K.J. Waldron, The constraint analysis of mechanisms, J.

Mech. 1 (1966) 101–114.

[14] K.J. Waldron, A study of overconstrained linkage geometry

by solution of closure equations – Part I. Method of study,

Mech. Mach. Theory 8 (1973) 95–104.

[15] K.J. Waldron, A study of overconstrained linkage geometry

by solution of closure equations – part II. Four-bar linkages

with lower pairs other than screw joints, Mech. Mach. Theory 8

(1973) 233–24.

[16] C. Wampler, B.T. Larson, A.G. Erdman, A new mobility

formula for spatial mechanisms, in: Proc. ASME International

Design Engineering Technical Conferences (IDETC),

September 4–7, 2007, Las Vegas.

[17] C.W. Wampler, J.D. Hauenstein, A.J. Sommese:

Mechanism mobility and a local dimension test, Mech. Mach.

Theory 46 (2011) 1193–1206.

http://www.eng.tau.ac.il/~shai/lancaster.ppt
http://www.eng.tau.ac.il/~shai/lancaster.ppt
http://www.eng.tau.ac.il/~shai/Publications/paperOct26.pdf
http://www.eng.tau.ac.il/~shai/Publications/paperOct26.pdf
http://www.eng.tau.ac.il/~shai/Publications/conference%202011%20asme%20pebble%5b1%5d.pdf
http://www.eng.tau.ac.il/~shai/Publications/conference%202011%20asme%20pebble%5b1%5d.pdf
http://www.eng.tau.ac.il/~shai/Publications/conference%202011%20asme%20pebble%5b1%5d.pdf

 11 Copyright © 2013 by ASME

